翻訳と辞書
Words near each other
・ シュプレヒコール (曲)
・ シュプレヒコールに耳を塞いで
・ シュプレフィコール
・ シュプレマティスム
・ シュプレントリンゲン
・ シュプレー川
・ シュプレー=ナイセ郡
・ シュプロイアーホフ通り
・ シュプロングル
・ シュプール
シュプール (線型代数学)
・ シュプール-WINTER VERSION'05/Swingin' Happy X'mas
・ シュプール上越
・ シュプール信越
・ シュプール号
・ シュプール大山
・ シュプール白馬
・ シュベツォフ ASh-2
・ シュベツォフ ASh-21
・ シュベツォフ ASh-62


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

シュプール (線型代数学) : ミニ英和和英辞書
シュプール (線型代数学)[がく]
=====================================
〔語彙分解〕的な部分一致の検索結果は以下の通りです。

: [ちょうおん]
 (n) long vowel mark (usually only used in katakana)
: [かた]
 【名詞】 1. mold 2. mould 3. model 4. style 5. shape 6. data type 
: [よ, しろ]
 【名詞】 1. world 2. society 3. age 4. generation 
代数 : [だいすう]
 (n) algebra
代数学 : [だいすうがく]
 (n) algebra
: [すう, かず]
  1. (n,n-suf) number 2. figure 
数学 : [すうがく]
 【名詞】 1. mathematics 2. arithmetic 
: [がく]
 【名詞】 1. learning 2. scholarship 3. erudition 4. knowledge 

シュプール (線型代数学) ( リダイレクト:跡 (線型代数学) ) : ウィキペディア日本語版
跡 (線型代数学)[せき]
数学、特に線型代数学における行列(せき、; トレース、; シュプール)あるいは対角和(たいかくわ)は行列の主対角成分総和である。それはに関して不変であり、また固有値の総和(固有値和)に等しい。即ち、行列の跡は行列の相似を除いて定まり、したがって一般に行列に対応する線型写像の跡として定義することができる。
行列の跡は、正方行列に対してのみ定義されることに注意せよ。この語は(この同じ数学的対象を意味する)ドイツ語のSpurからの翻訳借用である。
== 定義 ==
; 座標に依らない定義
: 有限次元ベクトル空間 上の自己線型作用素全体の成す空間 を の双対空間とのテンソル積
:: V^
* \otimes V\to \mathcal(V,V);\;h\otimes v \mapsto (w \mapsto h(w)v)
: によって同一視することができる。このとき、標準的な双線型写像
:: t\colon V^
*\times V \to F;\; t(w^
*,v)=w^
*(v)\quad(w^
*\in V^
*,\,v\in V)
: から(テンソル積の普遍性により)導かれるテンソル積空間上の線型写像
:: \operatorname\colon V^
* \otimes V \to F
: を跡(トレース)と呼ぶ。
; 座標を用いた定義
: 体 ''K'' 上のベクトル空間 ''V'' 上の線形写像 ''f'' が有限次元の像を持つとき、''V'' の有限個の元 ''x''1, ..., ''x''''n''双対空間 ''V''
* の元 ''y''1, ..., ''y''''n'' が存在して
:: 任意の ''z'' ∈ ''V'' について ''f''(''z'') = ∑ ''y''''i''(''z'') ''x''''i''
: となっている。このとき、∑ ''y''''i''(''x''''i'') は ''x''1, ..., ''x''''n'' と ''y''1, ..., ''y''''n'' の選び方によらず ''f'' のみによって定まる量となり、 ''f'' の跡あるいは指標 (distribution character) tr(''f'') とよばれる。
; 行列の跡
: が有限次元のとき、基底 とその双対基底 をとれば、 は線型写像のこの基底に関する表現行列のであり、任意の行列 は
:: A = \sum_ a_ \, e_i \otimes e^j
: と書ける。従ってこの跡
:: \operatorname(A) = \sum_ a_ \operatorname(e_i \otimes e^j) = \sum_ a_\delta_ = \sum_^n a_
: は対角線に沿った成分の和である(ここで、 はクロネッカーのデルタ)。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「跡 (線型代数学)」の詳細全文を読む

英語版ウィキペディアに対照対訳語「 Trace (linear algebra) 」があります。




スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.